Thermally Conductive, Tough Silicon Carbide Composite Attempting to Mimic Nature with High Strength up to 1600c in Air
نویسنده
چکیده
To modify the relatively low fracture toughness of monolithic ceramics, the incorporation of long ceramic fibre within a matrix material has been extensively performed. In this case, as cracks form in the matrix material and approach the fibres, they will be deflected at the interface between the fibre and the matrix. We developed another approach toward improving the toughness of ceramics involving the creation of a textured internal structure within the ceramic itself, similar in some respects to the fibrous structure of wood. Actually, we developed a tough ceramic, which consists of a highly ordered, close-packed structure of very fine hexagonal columnar fibres with a thin interfacial carbon layer between fibres . The interior of the fibre element was composed of sintered beta-silicon carbide crystal . This concept is fundamentally different from that described previously, in that it is extremely difficult to distinguish separate “fibre” and “matrix” phases in the traditional composite sense. The toughness of the material in this case derives from the tremendous amount of interface area created within the internal structure through the close packing of the hexagonal columnar fibres. Furthermore, this ceramic also achieved the excellent high temperature properties, high thermal conductivity and low density. These properties will make it very attractive for replacement of heavy metal super alloy components.
منابع مشابه
Fabrication of Ti3SiC2-SiC max phase composites via in-situ and ex-situ synthesis
Recently, a series of three-component compounds with the combination of Mn+1AXn known as Max phases have been considered as a new material. One of the most important features of Max phases, is the self-healing property of them. The main reason for considering Max Phases is a unique collection of unusual properties including their metallic, ceramic, physical, and mechanical properties. One of th...
متن کاملProducing the titanium nano composite statically compacted with the different pressure and investigation of the mechanical properties
Building the Nano composites for getting material with combinational properties and improving properties of currently used material has been taken significant attention. One of the ways of building Nano composites is using a method known as powder metallurgy. Because with this method not only wastes are decreased to minimum but we can also mix the materials with high melting point with the mate...
متن کاملExperimental study of fracture mechanics in the aluminum matrix composites containing Fifteen percent silicon carbide particles
In this investigation ‚the fracture toughness of A356 containing15%SiC composite was studied. Al/SiC composites have been considered because of their mechanical and erosion properties .Low fracture toughness in Al/SiC as compared with Aluminium alloys is one of its disadvantage. In this study at first A356 alloy was melted in a smelting electrical furnace then poured into the mould. A356-15% Si...
متن کاملBonding of an indirect composite material to a magnetic stainless steel alloy
Purpose: The purpose of the present study was to investigate the bond strength of an indirect composite material to a magnetic stainless steel alloy. Materials and Methods: The surfaces of machined magnetic stainless steel alloy specimens were abraded with 600-grit silicon carbide paper and then grouped according to the type of surface treatment given: 1) without preparation, 2) tribochemical s...
متن کاملEffect of Particle Volume Fraction on the Tensile Properties of Composite Al6061/SiC Materials by Hot Extrusion
In the present study the effect of phase volume fraction on the reinforcement of microstructure and tensile properties of composite extrusion process Al6061/SiC has been studied. For this purpose, the base alloy Al6061 using pure aluminum ingots, silicon, of Al-50% Mg, Al-10% Cr and a thin copper rod was prepared. Next, the composite Al6061/5% SiC, Al6061/10% SiC, Al6061/15% SiC and Al6061/20% ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007